Optimal Floquet Stationkeeping under the Relative Dynamics of the Three-Body Problem
نویسندگان
چکیده
Deep space missions, and particularly cislunar endeavors, are becoming a major field of interest for the industry, including astrodynamics research community. While near-Earth missions may be completely covered by perturbed Keplerian dynamics, deep require different modeling approach, where multi-body gravitational interactions play role. To this end, Restricted Three-Body Problem stands out as an insightful first strategy early mission design purposes, retaining dynamical transport structures while still being relatively simple. Dynamical Systems Theory classical Hamiltonian Mechanics have proven themselves remarkable tools to analyze deep-space within context, with applications ranging from ballistic capture trajectory stationkeeping. In work, based on premise, derivation co-orbital dynamics between two spacecraft is introduced in detail. Thanks analytical numerical models derived, connections relative CR3BP problems shown exist, first-order linear solutions inherited normal form. The higher-order derived allow theoretical finding unveiling natural phase structures, periodic quasi-periodic orbital families, which further exploited general proximity operation applications. particular, novel reduced-order, optimal low-thrust stationkeeping controller Floquet space, hybridizing State Dependent Ricatti Equation (SDRE) Koopman control techniques efficient unstable manifold regulation. proposed algorithm demonstrated validated several end-to-end low-cost comparison against continuous algorithms presented literature also addressed reveal its enhanced performance. Finally, conclusions open lines discussed.
منابع مشابه
the problem of divine hiddenness
این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...
15 صفحه اولthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولRelative Equilibria of a Gyrostat in the Three Body Problem
We consider the non-canonical Hamiltonian dynamics of a gyrostat in the three body problem. By means of geometric-mechanics methods we will study the approximate dynamics that arises when we develop the potential in series of Legendre and truncate this in an arbitrary order. Working in the reduced problem, we will study the existence of relative equilibria that we will denominate of Euler and L...
متن کاملRelative Equilibria in the Spherical, Finite Density Three-Body Problem
The relative equilibria for the spherical, finite density three-body problem are identified. Specifically, there are 28 distinct relative equilibria in this problem which include the classical five relative equilibria for the point-mass three-body problem. None of the identified relative equilibria exist or are stable over all values of angular momentum. The stability and bifurcation pathways o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Aerospace
سال: 2023
ISSN: ['2226-4310']
DOI: https://doi.org/10.3390/aerospace10050393